OpenDoc—Building Online Help for a Component-Oriented Architecture
Melissa E. Sleeter

Human Interface Design Center
Apple Computer, Inc.
10500 N. DeAnza Boulevard, MS: 302-1H1
Cupertino, CA 95014 USA
Tel: 408 862-2911

E-mail: sleeter m@applelink.apple.com

ABSTRACT

Component-oriented software allows end-users to
extend or replace monolithic applications using
components — software plug-ins that handle specific
kinds of data and can be used to add functionality to
documents. Building online help for component-
oriented architectures raises issues that are exemplified
in the specific case this paper examines—providing
help for OpenDoc™ component software using the
Apple Guide help system. Component-oriented
architectures have characteristics that challenge a
static, application-oriented help model, such as the
original Apple Guide model. The solution requires
extending a static help model in the following ways:
generating a help view that is both component-
oriented and dynamic, identifying a context for
“context-sensitive” access, and defining how content
will be integrated within the help view.

Keywords
Online help, component software, instructional
design, modular design, semantic matching

INTRODUCTION

OpenDoc is a component-oriented software
architecture available on the Mac OS, Windows,
UNIX, and OS/2 platforms. Help for OpenDoc on the
Mac OS platform was developed using the Apple
Guide help system.

Component-oriented software

architectures

Component-oriented software allows end-users to
extend or replace monolithic applications using
components—software plug-ins that handle specific
kinds of data (text, spreadsheets, graphics, sound,
network connections, etc.) and can be used to add
functionality to documents. With components, users
can easily create multi-media documents by adding to
the document components that handle the different
datatypes.

For example, the document in Figure 1 below
includes separate components that handle text,
graphic, and chart information. Users can edit each
part of an OpenDoc document in place, without
opening separate applications, by clicking a part to
make it active and put its menus in the menu bar.

OOk Py Taxa

Fraw 1o dou
T AITINCR NRECK
o

Graphic part

1k 1T crw HOU
LixwmE woutodoko
«y ohuopy fpeodoy
v oxe

Fe Ao
Figure 1. A component-based document

Component-oriented software represents a paradigm
shift for both end-users and help developers.

Traditional software processes consist of a single
application or operating system. In a component-
oriented architecture, processes that behave like a
single document, dialog box, control panel, or
application actually consist of separate components.
For example, all OpenDoc processes run within an
environment called the OpenDoc shell, which
provides certain basic behavior—opening and closing
documents, adding components to a document, and
basic editing behavior. Within any OpenDoc process,
the user experiences the shell and the active
component (with input focus) as a unified object and
will want help for both. However, the shell is
installed and updated independently of components.

This means that help content for the shell and
components must reside in separate files.

“Context” becomes more complicated in component-
oriented architectures. In traditional software
architectures, the context with input focus (i.e.,
available menus) is the frontmost process, usually an
application or operating system. In component-
oriented architectures, the context with input focus is
smaller than the process and is made up of several
parts. In OpenDoc, for example, the context with
input focus includes

e the active component (such as a word-processing
component)—Only one component at a time has
input focus.

e the OpenDoc shell —The menus provided by the
shell (Document and Edit) are always available,
along with the active component’s menus.

* plug-in services (for example, a
spellchecker)—Services may be available along
with the active component.

The process-level context includes

¢ the active document (in a multi-document
process)

» the active process (corresponds to a active
application or operating system)

In traditional software, “context-sensitive” help
usually means help for the current process.
Component-oriented software requires that help
developers consider and define a context for “context
sensitive help” because a process consists of separate
parts.

The Apple Guide help system

The Apple Guide help system supports the design and
delivery of interactive on-screen instructions. These
instructions are grouped in files, known as guides,
which are written for fixed entities, such as
applications. The example in Figure 2, SimpleText
Guide, is a single help file that is available when the
SimpleText application is active.

=
G SmpleText IE=R=
2 Guide
Topics Index Look For
1. Click = topic area: 2, Click a phrase, then click OF:
About SimpleText <+ |= How dol <+
SimpleText Docurments [add text to a docurment? [
Text change the way text looks?
Sound and Speech copy text?
Graphics rmove text within a docurment?
Movies select part of a docurnent?
Definitions create a clipping?
use a clipping?
delete part of a docurment?
= Why can'tl
[| change this docurment? | |
i i

Figure 2. Apple Guide help for an application

When a guide is open, users can click

buttons— Topics, Index, or Look For—to use
alternate access strategies for help information. The
left side of the access window shows a list of topics,
a list of index terms, or a field into which the user
can type a word or phrase. When the user selects a
term on the left, a list of applicable help sequences
appears on the right.

Apple Guide help is tightly integrated into the
product its supports. As the user steps through
instructions, the help system continuously interacts
with the product software, using context checks to
determine the state of the software.

A static help model

The original Apple Guide help model is static. It
provides help for the active process—the operating
system or an application—by opening a guide written
specifically for the process. In the example below, a
single file entitled “SimpleText Guide” provides help
for the SimpleText application. When the application
is active and the user invokes help, Apple Guide
locates and opens the SimpleText Guide file.

Static Help Model

Before OpenDoc, Apple Guide finds and launches
the guide for the active application.

SimpleText

SimpleText Guide

Figure 3. A static help model

Component-oriented architectures, such as OpenDoc,
have characteristics that challenge this static,
application-oriented help model:

e The functionality of a document (i.e., which
components the user will include) is not known
until the user creates the document. For example,
a user can create an online sales report by starting
with a text component, then adding components
to handle spreadsheet and graph information.
Another user editing the report could need help
for any component in the document.

* Once created, a document remains dynamic
because the user can add or delete components at
any time. In the sales report example above, the
user may decide to add a button component pre-
loaded with a URL to connect readers directly to
the company web site. Another user editing the
report could now need help with the button
component.

¢ Help developers can not know the context in
which a component will be used. For example,
an Internet-browsing application made of
OpenDoc components may contain its own web
browser component. However, the user can
replace the original web browser with a third-
party browser. A user asking for help will need
help for the new browser, not the original one,
and definitely not for both!

e The context for which help can be written (i.e., a
static set of tasks) is usually only part of the
context for which the user needs help (e.g., a
document or application made up of many
components). For example, help can be written
for a single component, such as a button
component. However, in a control panel made up
of many components (including the button), the
user probably wants help for the control panel
not just the button.

¢ In some components, help must document
separate “programming” and “use” modes. For
example, help for a button part must tell users
how to program the button (e.g., give it content,
such as a sound to play, a script to execute, or a
URL to connect to) and how to use the button
(e.g., move the button or change its size).

METHOD

In developing an online help model that works for
component-oriented architectures, we started by
putting together a interdisciplinary team to cover the
following functions: instructional design, human
interface design, Apple Guide help system
engineering, and Apple Guide scripting.

Based on a set of generated and observed user
scenarios, the team extrapolated user needs. We found
that our list included needs for both end-users and help
developers:

* transfer existing online help skills— Apple Guide
users are accustomed to choosing one help menu
item and getting context-sensitive help for the
frontmost process.

* minimize up-front choices when asking for
help— Users shouldn’t have to open separate help
files for each component in the process.

e access to help for tasks that are provided by the
OpenDoc operating environment, or shell, at all
times— The shell is running whenever an
OpenDoc process is active.

e recognize when several components do the same
task

e recognize help for a particular component (i. e,
reinforcement that the user is working in the
right component)

e part help available wherever the part is used

¢ basic OpenDoc information that is available
whenever the shell is active, is consistently
presented, and doesn’t add to developers’
distribution overhead

e astable set of tasks for which to author help

The resulting help model is based on the general
principle that help works best when designed for both
user needs and for the medium that conveys it [1].
The help model is designed to meet OpenDoc user
needs within the existing Apple Guide help system.
We also wanted to use as much as possible of Apple
Guide’s current help model and human interface, since
they are based on extensive user studies [2].

A Component-Oriented Help Model
When the environment is both dynamic and
component-oriented, it is reasonably obvious that a
help view should be generated by combining modular
help files and should be as dynamic as the process it
supports. For OpenDoc help, the key design goal was
to structure a model based on content that could be
authored in modules, which could then be
dynamically assembled and updated to provide
context-sensitive access to help.

OpenDoc’s help model has several characteristics that
extend Apple Guide’s original, static help model. We

believe that any component-oriented help model needs
to have most of the same characteristics:

e For purposes of providing access, “context-
sensitive” is defined as access to the entire
process, rather than an individual component.

¢ Instead of opening a single file for the process, a
help view is dynamically assembled. (Actually, it
is not possible to write a single, static file for a
dynamic entity.)

e The help view changes if components are added
to or deleted from the process.

¢ Content modules correspond to the smallest set
of stable tasks (i.e., a component or a set of
tasks common to several components).

e Content is integrated in the help view. (The level
to which integration is possible is one of the
more interesting issues in providing help for
component-oriented software).

Figure 4 below illustrates the new help model. In the
example, Apple Guide provides help for a process that
consists of three components: the OpenDoc shell, a
button, and a web browser. When the user invokes
help, Apple Guide locates help for all three
components, then dynamically constructs a help view
for the process.

Dynarric Help Modd
Apple Guide displays the help modules for all
parts in the active processes in the help view.

Internet Pathfinder (an OpenDoc process)

Web Browser part
Web Browser help
Button part T
Button help
OpenDoc Shell T
OpenDoc Shell help

Internet PathFinder Guide

Figure 4. A component-oriented help model

The features described in the rest of this paper include
both human interface elements and engineering
features that were added to the Apple Guide help
system to implement component-oriented help for
OpenDoc.

Process-wide access

In order to provide context-sensitive access for
component-oriented software, it is necessary to
identify a context for which the user needs help.

In an active OpenDoc process, one component at a
time has input focus. We discussed limiting access to
help for the active component, but based on user
testing it is often wrong to assume that users want
help for the current tool when they choose help [3].
Besides, OpenDoc components often have narrowly
focused functionality, similar to that of a tool on a
tools palette. A single component often doesn’t
provide a large enough context to address the user’s
goals. Another problem with limiting access to the
active component is that the OpenDoc shell and some
components don’t become “active” in a way that
allows the user to invoke help. For example, a button
component would execute its programmed action,
rather than become active, when the user clicks it.
Last, if we provide help at the component level, the
user must choose up front where to look for help, as
in Figure 5 below.

About Apple Guide

Show Balloons

[shell] Guide
[part] Guide
[part] Guide
[service] Guide

Figure 5. Too-many up-front choices

Ultimately, processes seem to provide the context
most closely linked to user goals. When OpenDoc
users invoke help, they will get help for the currently
active OpenDoc process, including help for the shell
and all components and services in the process. For
example, help for the process shown in Figure 6
below would include help for the OpenDoc shell,
parts 1 through 7, and any available plug-in services.

part 1
doc 1<part 2
part 3
part 4
process doc 2
< part 5

part 6

part 7
Figure 6. Process-wide help access

doc 3

With process-wide help, we can minimizes the user’s
up-front choices. When an OpenDoc process is active,
the help menu displays an item that is dynamically
named for the current process, as in Figure 7 below.

About Apple Guide

S$how Balloons

IProcessMamel Guide

Figure 7. Single menu item for process-wide help

Dynamically assembled help view

In developing help for an open, component-oriented
system, we found that we needed the greatest possible
flexibility in structuring help content into modules
and in getting content into the help view.

To create the help view, Apple Guide uses a
qualifying resource attached to each help file. The
resource specifies the conditions under which the
help’s content appears in the access window —based
on the component or components with which the
help file is identified. Using a qualifying resource
gives help developers the ability to identify help
content with one or more software components,
providing great flexibility in structuring help content.
Since the qualifying resource is defined by the help
developer, it is not necessary to ask component
developers for additional programming.

For example, help content that is common to several
software components can be pulled out into its own
file, with a qualifying resource that specifies several
components. Whenever any of the specified
components is in the active process, the help appears
in the access window.

The help view is also dynamically named, based on
the process name. (See Figure 7 above.) Apple Guide
users are accustomed opening the help menu and
choosing help with the same name as the active
process. Since component-oriented processes are
named by the user, help for such a process must be
named dynamically. In OpenDoc, the process name
appears in several locations in the interface (such as
in the process menus). For Apple Guide users, seeing
the process name preserves an expected one-to-one
correspondence between the process and its guide. If
the user changes the process name, the guide name
also changes.

Modular structure
In component-oriented environments, help developers
work with two separate help contexts—a context for

which help can be written and a context for which the
user needs help access. For example, users experience
OpenDoc’s operating environment— called the
shell—as an integral part of every component because
the shell’s functionality and menus are available
whenever OpenDoc is active. For purposes of access,
the shell’s help must be integrated into component
help. However, the shell and components are
independently installed and revised, so their help
content must be authored and maintained in separate
modules.

For OpenDoc, we found four stable entities for which
help modules can be written: the OpenDoc shell
(operating environment), components, services, and
in some cases, “chunks” of content common to
groups of related components.

Integrated content

Once the help context is identified, the help view is
constructed by defining how content will be
integrated. Integration of content serves two purposes:

e It allows users to search for help without having
to know what help file the information belongs
to—minimizing up-front choices.

e It shortens the search list because terms that
occur in multiple components are displayed only
once.

The second reason above provides a powerful
incentive for finding ways to integrate content. Lists
are easier to scan when terms are not repeated. We
found at least one case in which a process could
contain more than five components, each of which
would repeat the same topic and its associated help
sequences. Faced with a long list in which some
topics are duplicated, users would have had great
difficulty finding cases where several parts would do
the same task.

In Figure 8 below, topics (on the left) are not
integrated but appear under their component names.
This view forces the user attention to components and
away from content. Also, the topics in the example
are difficult to scan. It isn’t clear how items on the
left relate to items on the right because both are two-
level lists.

)
StockTicker
Cuido E
Topics Index Look For
1. Click a topic area: 2 Click a phrase, then click O
= OpenDoc 14| | How dol s
Using Cormpound Documents add text?
‘Working with Drafts change the way text looks?
‘Working with Links copy text?
Setting Cptions delete text?
= SimpleText
Text
sound and Speech
[* MoviePart
[» Spreadsheet - -
k& k&

Figure 8. No content integration

For OpenDoc, we considered several levels of
integration, based on the goal of allowing users to
focus on tasks, rather than components. Essentially,
OpenDoc’s help provides integrated search capabilities
so that any search based on a topic, an index term, or
a “look for” keyword is process-wide.

When the user invokes help for an OpenDoc process,
Apple Guide extracts the index terms and topics from
all help files that qualify for inclusion in the help
view. It resolves exact matches, then merges the
items into an alphabetical list, as shown in Figure 9
below.

)
_ _ A it
Topics Index Look For

1, Click an index entry:

AFCDEFGHIJKLMNOPQRS [
component ki
conference
disk
editar
frame
partition
wigwer
walurmne ||

k%

Figure 9. Integrated index terms

Once past the up-front choices, users need to be able
to identify the component to which help information
applies. This is necessary when more than one
component in a process can do a task. It is also
necessary when there is a semantic, but not a logical,
match between terms. In Figure 10 below, two help
files contain the index term “volume.” Apple Guide
recognizes a semantic match and displays “volume”
only once in the access window. However, when the
term is selected, users can distinguish between one
component that uses “volume” to mean “loudness”
and another that uses it to mean “a disk partition.”

)
_ _ L
Topics Index Look For
1. Click an index entry:
sBCDEFGHIIKLMNOPQRS| |~ Apple Media Conferencing [
How dol
Cornponent it adjust The ring's volurme?
conference adjust the speaker volurme?
disk
N = Drive Setup Part
editar
frame How dol
o partition & disk into volurmes?
partitian rrake a volurme read-only?
Wigwer
0 —
k%

Figure 10. Recognizable component help

By associating help content with a component in the
access window, the help system provides access to
help for an individual part within a larger context.

In keeping with the goal of minimizing up-front
choices, users should be able to search for keywords
without being aware of which component the help is
associated with. Apple Guide’s Look For access
window allows the user to type in a search term. The
“hits” on the right group information with software
components, as in Figure 11 below.

[m)

@ Biz Plan Guide

Topics Index

=l - |

Look For

1. Click the arrow button to
hegin, then type one or
more words to look for:

[

= Apple Media Conferencing
How do |
adjust the ring's volume?
adjust the speaker volurme?

= Drive Setup Part
How do |
partition a disk into volurmes?
rmake a volurme read-only?

2. Click Search:

<

¥

Figure 11. Integrated search across the process

IMPLICATIONS

While developing the OpenDoc help, we identified
help issues that have implications for other
component-oriented architectures.

Instructional Issues

As a result of integrating help content in the access
window, we discovered several instructional issues.
First, in order for alphabetized topics to work well in
an open system, we found that verb phrases don’t
work well in an open system that aims at integrating
content. For OpenDoc, topics are expressed as nouns,
rather than verb phrases (i.e., “Movies” rather than
“Playing Movies” or “Working with Movies”). The
reason is that, when the user searches an alphabetized
list, the verb can be misleading.

In Figure 12 below, the topic is “Text” rather than
“Working with Text” so that users scan quickly find
the activity they want to do. The help sequences (on
the right) are still expressed as tasks.

)
@ Biz Plan Guide [[
Topics Index Look For
1. Click 2 topic area: 2 Click a phrase, then click O
Docurments [£ | = DragText £
Drafts How do |
Lirks add text?
ovies edit text?
OpenDoc Parts remave t_ext?
Sound and Speech = Text Editor
I | tov o
add text?
change the way text looks:
copy text?
|| delete text? [+

Figure 12. Standardized topics in the help view

Because exactly matching terms are resolved, we also
looked for ways to standardize topics that deal with
the same tasks. The OpenDoc component category
names worked well for this purpose. (See the
appendix for a list of category names.) Examples
include “Text,” “Spreadsheet,” and “Chart.” We also
found that topics and index terms can serve to draw
together similar tasks done with different
components. Figure 13 below illustrates an example
where two components in a process will let the user
connect to the Internet.

[m)

El =] =

Topics Index Look For

@ Biz Plan Guide

1. Click & topic area: 2.Click a phrase, then click OF:

Docurments 4+ | = world Wide Web [
Drafts How do
Internet Connection connect ta the Internet?
Links =~ FTP
Parts How dol
Text connect ta the Internet?
K%

5l

Figure 13. Topic used as branching point

Better content integration
Component-oriented help systems push us toward
more highly integrated help content that lets users
focus on tasks and treats components as incidental
tools. The need to integrate help content makes more
urgent the need for advances in language parsing and
semantic matching.

For example, content could be more tightly integrated
if we could resolve matches at the sequence level
(e.g., match “How do I edit text?” with “How do I
change text?”) Figure 14 below illustrates some of

the difficulties of resolving overlapping content.
When dealing with stated tasks, rather than simple
terms, current help systems are unable to deal with
differences in syntax and levels of abstraction.

Topic Area
Drawing and Painting

7N

MacPaintPart XYZPaintPart

How do we resolve?

How Do |
edit fill color? — Changing the fill color ——»| 1. Sequence structure
edit the pen? = Changing the pen size =~ ———=| 2. Use of synonyms

set preferences? ——= Changing the brush size

. X —————| 3. Levels of abstraction
Changing the pen width

Figure 14. Limitations of semantic matching

With advances in semantic matching, we might be
able to provide a help system in which users state a
task for which they need help and the help system
could constructs a path of steps from a knowledge
base encompassing everything that can be done on the
user’s system.

In the meantime, help developers for component-
oriented environments need to develop ways to
integrate content more fully. Extracting and
alphabetizing index terms across the components in a
process is a good start, but we need to do better. For
example, basic OpenDoc terms are defined in help for
the OpenDoc shell. It would be useful to directly
access and display these definitions (i.e., using “hot
text”) from component help. To do that, we need to
be able to extract and merge at the content level.

Unexpected benefits of modular
structure

Modularity can provide unexpected benefits. The help
module for the OpenDoc shell provided a unique
opportunity because it is included in the help view
whenever OpenDoc is active (i.e., no matter what
component is active). The shell’s help covers generic
OpenDoc terminology and tasks, making the
information consistent (because it exists only once)
and essentially providing it free to component
developers (because they don’t have to write or
distribute the information).

We also found that the component-oriented help
model can be extended to help for non-component
environments. The benefits include greater flexibility
in access to help content, smaller modules to revise
and test, and the ability for third-party add-ons to
bring in their own help.

CONCLUSION

Building help for component-oriented software forces
help developers to re-think online help right down to
the design model. The revision of a static help model
to support OpenDoc for the Mac OS exemplifies the

issues facing help developers, provides a set of
features that can be used as a starting point for
implementation, and provides implications for the
future of online help.

With the advent of component-oriented technology,
help systems that are tightly integrated into the
software product must become as modular as the
technology they support. If the general trend of
software is toward modularity, then perhaps the need
to restructure help is a confirmation that help is
moving in the right direction.

ACKNOWLEDGMENTS

The author would like to acknowledge the people who
contributed to design and engineering for Apple Guide
help for OpenDoc: Jose Arcellana, Dave Curbow,
Elizabeth Dykstra-Erickson, Shemin Gau, Michael
Gough, Devon Hubbard, Kevin Knabe, Brian
McGhie, James Miyake, and James Palmer. Thanks
also to Rebecca Reese for her editing support.

REFERENCES

1. Sellen, Abigail and Nicole, Anne. Building User-
Centered Online Help, in The Art of Human
Computer Interface Design, Brenda Laural, ed..
Addison-Wesley, Menlo Park, CA, 1990, pp.
143-153.

2. Knabe, Kevin. Apple Guide: A Case Study in
User-Aided Design of Online Help, in Proc. CHI
‘95 Human Factors in Computing Systems
(Denver, CO USA, May 7 - 11, 1995), ACM
Press, pp. 286-287.

3. Duffy, Thomas M., Mehlenbacher, Brad, and
Palmer, James E. . Online Help: Design and
Evaluation. Ablex Publishing Corporation:
Norwood, NJ, 1992.

APPENDIX— OPENDOC PART CATEGORY
NAMES

Part category is a name that describes the kind of
information a part handles. The names below
represent the latest list of category names for
OpenDoc parts. Where the names are simple, specific,
and activity-based, they may be useful as standardized
topics for open, component-based help.

Plain text (plain ASCII text)

Styled text

Drawing (object-based graphics)

3D graphic (3D object-based graphics)

Painting (pixel-based graphics)

Movie (movies or animation)

Sampled sound (simple sampled sounds)

Structured Sound (sampled sounds with additional
information)

Chart (chart data)

Formula (formula or equation data)

Spreadsheet

Table (tabular data)

Database

Query (storied database queries)

Connection (network-connection information)

Script (user scripts)

Outline (outlines created by an outliner program)

Page Layout (page layouts)

Presentation (presentations or slide shows)

Calendar (calendar data)

Form (forms created by a forms generator)

Executable (stored executable code)

Compressed (compressed data)

Control Panel (data stored by a control panel)

Control (data stored by a control, such as a button)

Space (stored server, disk, or subdirectory data)

Project (project-management data)

Signature (digital signatures)

Key (passwords or keys)

Utility (data stored by a utility function)

Mailing Label (mailing labels)

Locator (locators or addresses, such as URLSs)

Printer (stored printer data)

Time (stored clock data)

